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Abstract 

Embryo implantation is critically dependent on a supportive uterine environment. 
Uterine receptivity is the culmination of a cellular and molecular transformation 
mediated locally by paracrine signals under the governance of ovarian steroid hormones, 

with cells and cytokines of the immune system playing integral roles in this process. Semen is 
now recognised as contributing to endometrial preparation for embryo implantation, through 
the agency of specific factors in the seminal plasma fraction of the ejaculate. Transforming 
growth factor-P (TGPP) and other immunoactive moieties derived from male accessory glands 
interact with epithelial cells in female reproductive tissues to induce pro-inflammatory cytokine 
expression and initiate an inflammatory cascade. The consequences are recruitment and activa­
tion of macrophages, granulocytes and dendritic cells which have immune-regulatory and tis­
sue remodelling roles. The cytokines elicited by seminal activation also exert embryotrophic 
effects and contribute to optimal preimplantation embryo development. This review summarises 
our current understanding of the molecular and cellular basis of interactions between seminal 
plasma and the female reproductive tract, and explores the potential mechanisms through which 
seminal plasma influences the establishment of pregnancy. 

Introduction 
Exposure to semen elicits striking changes in cytokine expression and in resident leukocyte 

populations in female reproductive tract tissues. A dramatic infiltration of activated inflamma­
tory cells including macrophages, dendritic cells and granulocytes is evident after seminal con­
tact in the cervix and uterus of all species so far studied. The molecular and cellular basis of this 
post-mating inflammatory response has been explored most thoroughly in mice.̂ '" '̂̂  The re­
sponse is initiated when seminal plasma moieties interact with estrogen-primed uterine epithe­
lial cells to induce a surge in synthesis of pro-inflammatory cytokines including 
granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-6 and an ar­
ray of chemokines including monocyte chemotactic protein (MCP)-l, KG, macrophage in­
flammatory protein (MlP)-la, MIP-ip and RANTES.^'^The response is transient, with reso­
lution of inflammation by the time of embryo implantation on day 4 of pregnancy in the 
mouse. Similar effects are seen in pigs,^ where instillation of seminal plasma into the uterine 
lumen at estrus induces expression of GM-GSF, IL-6 and MGP-1, which recruit macrophages 
and dendritic cells into the endometrial stromal tissue.^ 
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Cellular changes comparable to those seen in the mouse and pig appear to take place in the 
human cervix. Intercourse is known to elicit neutrophil recruitment into the superficial epithe­
lium of the cervical tissues/ but changes in the deeper cervical stromal tissues have been more 
difficult to study. In a recent study examining the local effects of natural insemination in 
peri-ovulatory women, we have shown that intercourse induces an inflammatory reaction across 
the full thickness of the cervical epithelium and subjacent stromal tissues with a striking infil­
tration of macrophages, dendritic cells, and lymphocytes in both compartments. Leukocyte 
influx requires contact between seminal fluid and the female tract tissues since no inflamma­
tory response was seen following condom-protected intercourse. Regulation of the cervical 
leukocytic infiltrate occurs by activation of pro-inflammatory cytokines GM-CSF, IL-6 and 
IL-8. In vitro studies suggest that the effects of seminal plasma may extend to the uterus in 
women. ̂ '̂̂ ^ 

In this chapter we v îll review recent advances in our knowledge of the molecular regulation 
of this response, including the identity and interaction between active constituents in seminal 
plasma, and examine the potential physiological consequences in terms of female reproductive 
function and pregnancy success. The review will largely focus on events in mice, but where 
relevant information is available, human and other species will be discussed. 

Semen Exposure and Pregnancy Outcome 
A case for semen exposure contributing to optimal pregnancy outcome can be made based 

on data from several mammalian species. While the practise of artificial insemination shows 
that seminal plasma is not mandatory for initiation of pregnancy, there is evidence that the 
success and quality of the pregnancy, particularly as measured by growth trajectory of the fetus, 
are compromised if females are not exposed to seminal plasma. Experiments in which the 
seminal vesicle, prostate or coagulating glands are surgically removed from mice, rats and ham­
sters prior to mating each show that seminal vesicle fluid is the most vital nonsperm compo­
nent of the ejaculate.^^' In mice, embryo transfer protocols generally employ recipients ex­
posed to seminal plasma by mating to vasectomised males, but fetal loss and abnormality is 
considerably greater when pseudopregnancy is achieved without exposure to male fluids. 
When recipient females are mated with seminal vesicle deficient males, transferred embryos 
yield fetuses with altered growth trajectories and this is associated with changes in placental 

e-development. In rats, implantation rates and fetal growth are similarly impaired unless fi 
males are inseminated prior to embryo transfer. ̂ ^ In pigs, artificial insemination with diluted 
semen reduces litter sizes but mating with a vasectomised male or administration of heat-killed 
semen restores litter size and improves farrowing rate.^ '̂̂ ^ 

Clinical studies in humans have shown that live birth rates in couples undergoing IVF 
treatments are significantly improved when women are exposed to semen at the time of em­
bryo transfer. ' Furthermore, treatment of women suffering from recurrent spontaneous 
abortion with seminal plasma pessaries has been reported to improve pregnancy success. In 
preeclampsia, there is a cumulative benefit of chronic exposure to semen, with limited sexual 
experience or use of barrier methods of contraception being linked with increased risk,^ '̂ ^ and 
evidence from women where a change in male partner has occurred suggesting that the effect is 
partner-specific. Markedly increased rates of preeclampsia are also evident in pregnancies 
initiated by donor oocytes or semen,^^ when prior exposure to sperm or conceptus antigens has 
not occurred. 

Active Factors in Semen 
Experiments in mice from which accessory glands were surgically removed showed that the 

active inflammation-inducing moieties in semen are derived from the seminal vesicle, the prin­
cipal constituent of seminal plasma in the mouse.^ Using protein chromatographic techniques 
and neutralising antibodies, TGFp was identified as the key component for induction of uter­
ine epithelial GM-CSF synthesis following mating in mice.^^ The TGFp content of seminal 
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vesicle fluid is 70 ng/ml; approximately five-fold the content of serum, and similar to that of 
colostrum which is the most potent biological source of TGPp known. Seminal vesicle TGPP 
synthesis is testosterone dependent, with a severe reduction evident after castration, and partial 
recovery after administration of exogenous steroid hormone. 

TGFp is also identified as the principle active moiety in human semen in experiments using 
primary and transformed human cervical keratinocyte cultures. ̂ '̂̂ '̂̂ ^ This cytokine was ini­
tially identified in the plasma fraction of human semen when it was recognised to confer in­
hibitory bioactivity in prostatic carcinoma cell lines.^^ Unlike TGPp in serum, which is present 
exclusively in the latent form complexed with p2-microglobulin, approximately 25% of TGPp 
in human and rodent seminal plasma exists in the mature, active form. Subsequently it was 
shown using isoform-specific immunoassays that TGPp in human semen is principally of the 
TGPpi isoform, with a lower content (5-10%) of TGPp2.^2'^^ The content of TGPp3 ap­
proximates that of TGPp 1 yielding a final concentration of approximately 300 ng/ml total 
TGPp (Sharkey and Robertson, unpublished data). Responsiveness of both murine uterine 
epithelial cells and human cervical epithelial cells to TGPp is maximal at ovulation.^^ Whether 
this reflects a differential expression in TGPp receptors or other components of the docking or 
signal-transducing repertoire of molecules remains to be elucidated. 

Other inflammation-inducing moieties present in semen are likely to synergise with TGPp 
in targeting female tract cells, and may act differentially between species and even between 
individuals in a population, xu Prostaglandin E (PGE) is abundant in human semen as the 
19-hydroxy form, but is undetectable in rodent and porcine seminal plasma. In vitro experi­
ments with cultured human cervical explants show that 19-hydroxy PGE promotes expression 
of chemotactic IL-8 and inhibits expression of the anti-inflammatory molecule secretory leu­
kocyte protease inhibitor (SLPI). Another abundant seminal plasma cytokine is IL-8, which 
synergises withTGPp to induce IL-ip, IL-6 and LIP from endometrial epithelial cells. ̂ ^ 

Bacterial lipopolysaccharide similarly acts to induce cytokine synthesis in murine and hu­
man uterine and cervical epithelial cells, presumably through binding to Toll-like receptors 
TLR2 andTLR4. Of emerging interest is the impact of different 'probiotic' versus pathogenic 
bacterial species in the male and female tract flora.^^ Through differential binding to TLRs and 
other pattern recognition receptors on the surface of reproductive tract epithelial cells, the 
relative abundance of different bacterial species would further influence the character of the 
cytokine response.^ Pinally, we find that the type-1 cytokine interferon (IPN)-Y acts as a po­
tent inhibitor of TGPp signalling both in human and mouse epithelial cells.̂ ^ Together this 
provides an emerging picture of multiple active seminal constituents acting in concert to elicit 
expression of several cytokines in the female tract, and implies likely variation in the strength 
and pattern of response elicited by individual seminal fluids within a male population. 

Consequences of the Post-Mating Inflammatory Response 
The inflammatory response accompanying insemination impacts on several reproductive 

processes by virtue of the wide variety of potential actions of the leukocytes recruited into the 
endometrial and cervical tissues. Pour categories of effector fiinction are postulated; (1) clear­
ance of superfluous sperm and microorganisms introduced into the uterus at mating; (2) acti­
vation of female immune responses specific to paternal transplantation proteins and other 
antigens present in semen; (3) tissue remodelling associated with preparation of endometrial 
receptivity; and (4) activation of expression of cytokines and growth factors implicated in pre-
implantation embryo development (Pig. 1). 

The distribution of seminal material within the female tract after coitus would constrain 
the tissues infiltrated by inflammatory cells and thus the range of downstream effects in a 
species-specific manner. In rodents and pigs the ejaculate fills the uterine lumen and clearly can 
directly access the implantation site, but in humans an impact on the uterine environment is 
more difficult to envisage, with semen deposition occuring at the external os of the cervical 
canal. Of relevance to this is the observation in humans that seminal plasma constituents in­
cluding TGPp are bound to the postacrosomal region of the sperm head and thus presumably 
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Figure 1. Schematic illustrating potential roles for the post-mating inflammatory cascade in promoting 
uterine receptivity and embryo implantation. Seminal plasma cytokines includingTGpp, 19-OH PGE and 
IFNy, as well as bacterial LPS, synergise to activate expression of pro-inflammatory cytokines in uterine and 
cervical epithelial cells after mating. Cytokines including GM-CSF, IL-6, LIF and several chemokines such 
as MCP-1, KG and RANTES act to recruit and activate macrophages, dendritic cells and neutrophils into 
the endometrial stroma. Infiltrating macrophages and dendritic cells have roles in processing and presen­
tation of seminal antigens to activate maternal immune tolerance. Macrophages further act to secrete growth 
factors, MMPs and other enzymes and angiogenic molecules to promote tissue remodelling and vasculogenesis. 
Neutrophils passing into the luminal space participate in clearance of debris and micro-organisms intro­
duced at mating, but may also contribute to sperm selection through phagocytosis of redundant sperm. 
Cytokines secreted into the luminal fluid target the developing embryo. 

are carried together with sperm into the higher tract. ̂ ^ Furthermore delivery of seminal plasma 
as well as sperm from the cervix into the uterus and Fallopian tubes is served by a process of 
rapid and sustained uterine peristaltic contractions which transport macromolecular material 
to the tube ipsilateral to the dominant follicle independently of any motile or chemotactic 
properties of sperm.^^ 

Sperm Selection and Clearance of Seminal Debris 
One obvious role for the abundant populations of neutrophils that emigrate between epi­

thelial cells into the uterine lumen is phagocytosis and clearance of micro-organisms and semi­
nal debris remaining in the tract after intromission. The higher reproductive tract is normally 



152 Immunology of Pregnancy 

sterile, with insemination providing the opportunity for access by commensal micro-organisms 
originating from male and female tissues including sexually transmitted pathogens. In mice, 
bacteria are prevalent in the uterus after insemination but sterility is recovered within 24 h, 
even in GM-CSF null mutant mice where impaired macrophage ftinction predisposes to uter­
ine infection in virgin animals. ^ The physiological significance of seminal plasma in uterine 
clearance is illustrated in livestock species where rapid resolution of the uterine inflammatory 
response is linked with pregnancy success. ̂  

Phagocytic activity in the cervical or uterine lumen targets spermatozoa as well as bacteria. 
Sperm selection is an interesting potential ftinction of female leukocytes recruited across the 
luminal surface of the tract; through differential resistance to phagocytosis individual sperm 
appear to be selected for fertilisation competence and on the basis of other morphological or 
antigenic parameters, such as haplotype in the MHC-linked t-complex. Whether female 
immune cells can actively select and inactivate sperm within a single ejaculate or distinguish 
between sperm of different mates in polyandrous species requires investigation. While anti­
body and complement-mediated opsonisation would provide a potential mechanism for selec­
tion, the molecular basis of discrimination and the identity of any target structures remain to 
be characterised. 

Priming the Maternal Immune System to Paternal Antigens 
Macrophages and dendritic cells comprise the major populations of cells recruited into the 

endometrial stromal tissue after exposure to semen. Both have professional antigen processing 
and presenting ability and are implicated in initiating active immune responses to paternal 
MHC and other antigens in semen. The consequences of this would be important for future 
female tract immune responses to semen, as well as for pregnancy, since the conceptus shares 
paternal antigens with those in semen. Early in the post-mating inflammatory cascade, these 
cells accumulate subjacent to the surface epithelium in the endometrial stroma,^'^ then engulf 
and process paternal ejaculate antigens, before trafficking to para-aortic lymph nodes (PALN) 
draining the uterus, the mesenteric lymph nodes and spleen. ' 

These events result in activation and proliferation of lymphocytes in draining lymph nodes. 
The PALN of mice enlarge after allogeneic insemination,'^'^ as T-lymphocyte proliferation com­
mences and expression of cytokines and activation antigens becomes evident. Matings with 
vasectomised males indicate that lymphocyte activation occurs independently of sperm but in 
contrast, males from which seminal vesicle glands have been surgically removed fail to stimu­
late PALN cell proliferation or cytokine synthesis. Amongst the responding cells are 
T-lymphocytes reactive with paternal MHC antigens, which are aggressively immunostimulatory 
in graft-versus-host assays for the first two days after insemination and then show evidence of 
suppressive regulation. Similarly, paternal specific alloreactivity is strongly suppressed in 
para-aortic lymph node cells recovered on day 3 of pregnancy from rats.^^ Similar kinetics are 
evident in the time course of expansion of TGPP-producing suppressor cells identified within 
the para-aortic lymph node from the time of implantation, and in the appearance of T regu­
latory cell populations, which have recently been shown to increase in the blood, lymph nodes 
and spleen of mice within three days after mating. ̂ ^ 

Induction of Maternal Immune Tolerance for Implantation 
Activation of maternal lymphocytes after mating raises the possibility that exposure to se­

men can impact on the phenotypes or abundance of lymphocyte subsets regulating implanta­
tion and placental morphogenesis. In rodents, specific populations of lymphocytes appear within 
the decidua to promote placental growth and development during the first days after implan­
tation. These lymphocytes include a/p and y/S T-cells,̂ '̂̂ ^ NKT cells^^ and NK cells.̂ *̂  Based 
on the kinetics of their induction and the similarity in phenotypes between decidual and PALN 
lymhocytes, we have hypothesised that the appearance of these cells in the implantation site 
might be causally linked with the female immune response to ejaculate antigens. ' The 
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possibility that lymphocytes activated and induced to proliferate at insemination might be 
selectively recruited into uterine implantation sites after recirculation via the blood has been 
evaluated by passive transfer experiments in pregnant mice. Lymphocytes recovered from the 
PALN after insemination and radiolabelled prior to passive transfer into pregnant recipients 
can indeed be shown to home to implantation sites in the uterus. 

The lymphocytes present in the implantation site are largely antigen nonspecific T-regulatory 
cells and NK cells. Uterine NK cell precursor cells are known to originate in tissues other than 
the uterus, with the spleen identified as the richest source and a lesser contribution from pe­
ripheral lymph nodes, so it is unlikely that PALN-derived cells add substantially to this lin­
eage. In contrast, it is possible that NKT cells activated in PALN at insemination home to the 
uterus and contribute to the dramatically (40-fold) expanded NKT population evident in the 
implantation site by day 6 of pregnancy.^^ Uterine NKT cells are T-cell receptor Val4^ but 
express a novel VP repertoire reactive with a class I/Ib molecule other than CD 1 expressed by 
placental cells.̂ ^ If semen were to provide or induce in female tissues the yet to be identified 
class I/Ib molecule, this could provide a mechanism for NKT activation in early pregnancy. 
This possibility is supported by the presence of MHC class la and lb molecules in semen and 
of a-galactosylceramide and other glycolipids in sperm. 

The smaller contingents of antigen-specific lymphocytes present in the implantation site 
might reasonably recognise paternal antigens present in semen and shared by the conceptus. 
Semen contains abundant major and minor histocompatability and other antigens, as well as 
somatic cells such as leukocytes and desquamated genital tract epithelial cells, and soluble 
HLA.^^ 

The quality of any lymphocyte response raised to seminal antigens would need to be consis­
tent with maternal tolerance of the conceptus at implantation. Seminal plasma contains several 
powerful immuno-regulatory molecules that can dampen potentially destructive Type-1 
(cell-mediated) immune responses and drive immune outcomes of the quality required for 
ftinctional immune tolerance. Both the PGE and TGpp present in semen have well described 
immune-deviating properties in other tissues.^ '̂̂ ^ 

Consistent with this, changes in T-lymphocyte status in draining lymph nodes and periph­
erally in the female after insemination are accompanied by evidence of a transient state of 
hypo-responsiveness in paternal alloantigen reactive lymphocytes. That semen can induce ftinc­
tional immune tolerance to male antigens was first suggested by experiments showing that 
mated mice are unable to reject syngenic skin grafts of paternal origin. ^ Subsequently it was 
demonstrated that protection is similarly conferred to major histocompatibility antigens, but 
only when sperm is delivered in the context of seminal plasma. Washed sperm, but not whole 
semen, was shown to elicit transplantation immunity to paternal skin graft challenge, despite 
both immunisation events leading to lymph node hypertrophy. Likewise, immunisation with 
washed sperm but not natural insemination primed mice for generation of cytotoxic 
T-lymphocytes against H-Y antigen. The potential beneficial effect of this immune response 
for pregnancy outcome has been identified in experiments showing that uterine 'priming' with 
semen can promote implantation and fetal growth in subsequent pregnancies, in a 
partner-specific manner. ' Consistent with an immunological mechanism, removal of lymph 
nodes draining the uterus after exposure to semen revoked the effect and led to a decrease in 
litter size and fetal and placental weight.^ '̂̂ ^ 

Contribution to Tissue Remodelling 
In evaluating the impact of the post-mating inflammatory cascade it is important to recognise 

that leukocytes exert effects in their local milieu other than through activating immune re­
sponses. Macrophages and granulocytes secrete an array of potent enzymes and signalling mol­
ecules that can elicit proliferation, differentiation or other functional changes in the status of 
adjacent nonhemopoietic cells (see Chapter 6). Through influencing the structure of the extra­
cellular matrix and the behaviour of endothelial cells, epithelial cells and fibroblasts comprising 
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the endometrium, tissue remodelling roles which assist in the preparation for pregnanq^ can be 
envisaged. 

Foremost amongst macrophage- and granulocyte-derived enzymes are the matrix 
metalloproteinases (MMPs), a family of zinc-containing endo-proteinases that share structural 
domains but differ in substrate specificity and regulation of synthesis. Macrophage production 
and secretion of large quantities of MMPs is regulated by local cytokine environment, with 
induction after exposure to factors including GM-CSF, tumor necrosis factor alpha (TNF)a 
and IL-1. The catalytic activity of these enzymes is pivotal for cyclic endometrial breakdown 
and regrowth, and for the remodelling underlying embryo implantation and decidualisation. 
Precise spatial and temporal patterns of expression of the MMP family and its regulatory com­
ponent, the tissue inhibitors of metalloproteinases (TIMPs), are characteristic of the pre and 
peri-implantation period in rodents.^^ The significance of leukocytes recruited in response to 
seminal factors in regulating MMPs during early pregnancy has not been evaluated but consis­
tent with such a role is observations in rats that expression of MMP-7 (matrilysin) is highest on 
the first day after mating,̂ "^ with MMP-2 also induced prior to embryo implantation.^^ In 
golden hamsters, induction of pregnancy in the absence of male accessory gland fluids is asso­
ciated with reduced expression of MMP-2 in the implantation site.^ 

Inflammatory leukocyte regulation of endothelial cells in the angiogenic response provides 
another potential avenue for seminal factor eflPects on implantation. Vasodilation and oedema 
are associated with the inflammatory response to semen in mice and several other species. ' 
Vascular endothelial growth factor (VEGF) as well as other key angiogenic factors IL-1, TNFa 
and basic fibroblast growth factor (bFGF) are identified as products of activated macrophages 
and clearly are candidate mediators of the endothelial changes induced by semen.^''^ That 
VEGF mRNA expression in the implantation site is diminished when pregnancy is initiated by 
accessory-gland deficient males in golden hamsters suggests that the consequences of 
semen-induced angiogenic changes perpetuate beyond the acute inflammatory period.^ 

A ftirther target for the actions of macrophage-secreted products in early pregnancy are the 
luminal epithelial cells involved in embryo attachment during the initial phases of embryo 
implantation. The 'window of implantation' or opportunity for embryo adhesion is defined by 
specific changes in the expression of epithelial integrins and mucins, allowing close apposition 
between the blastocyst and the luminal surface, and finally adhesion of the two cell surfaces. 
While ovarian steroid hormones clearly have an overarching role in regulating these changes, 
macrophages are closely juxtaposed with processes indigitating between epithelial cells in the 
endometrium, and this spatial association affords a potential role in influencing integrin ex­
pression at the paracrine level. That leukocytes may directly regulate the adhesive properties of 
epithelial cells has been demonstrated with human uterine epithelial cells in vitro, using mem­
brane spheroids from the choriocarcinoma cell line BeWo.̂ ^ The ability of macrophages to 
alter transport properties and maintenance of epithelial barrier integrity^ ̂  might ftirther con­
tribute to implantation through facilitating trophoblast breaching of the epithelial surface. 

Activation of Embryotrophic Cytokines 
The cytokines induced after exposure to semen target not only maternal leukocytes in the 

endometrial stromal tissue, but also are secreted into the luminal space to potentially interact 
with the developing embryo as it traverses the oviduct and uterus prior to implantation. Several 
cytokines activated by semen are amongst those attributed with regulating proliferation, viabil­
ity and differentiation of blastomeres in embryos.^^'^^ GM-CSF, a major component of the 
post-mating cytokine response in mice,^ '̂̂  is identified as essential for normal blastocyst de­
velopment and subsequent viability. Expression during early pregnancy also occurs in the uterus 
and oviduct of women^^ and other mammalian species.^^ "̂  GM-CSF targets the preimplanta-
tion embryo to promote blastocyst formation, increasing the number of viable blastomeres 
through inhibiting apoptosis and facilitating glucose uptake.^^ Human embryos cultured in 
GM-CSF are twice as likely to reach the blastocyst stage of development, blastulate earlier and 
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have increased cell numbers both in the inner cell mass and trophectoderm. Other cytokines 
targeting the developing blastocyst including IL-6 and LIF are similarly induced after exposure 
to semen^ '̂̂ ^ (SAR unpublished data). 

Summary and Conclusions 
A significant body of evidence now exists to link exposure to semen with pregnancy success 

in human, rodents and several additional mammalian species, and the studies reviewed herein 
are beginning to provide explanations for the underlying molecular and cellular mechanisms. 
Seminal plasma can thus no longer be considered simply a sperm transport medium, but in­
stead must be recognised as a means for communication between the male and female repro­
ductive tissues. This function of seminal plasma presumably has its evolutionary origins in 
benefiting the likelihood of a pregnancy after insemination by a given male. From the female 
perspective the opportunity for activation of immune events prior to implantation may facili­
tate sperm selection and discrimination between competent and suboptimal embryos. 

To date, research in this field has focussed largely on rodent and livestock species, and for 
obvious reasons the significance of seminal factors in humans have been more difficult to ex­
plore. While direct extrapolation from the rodent to the human may not be justified, clearly 
these findings have implications for the association between semen exposure and the incidence 
of pathologies of human pregnancy. We speculate that the aberrant Type 1 immunity associ­
ated with 'shallow' placentation in preeclampsia and recurrent miscarriage^ '̂ ^ can be initiated 
by insufficient or inappropriate immune responses to seminal antigens following intercourse, 
perhaps linked with seminal plasma cytokine deficiency or female incapacity to respond to 
seminal signals. There are additional implications for assisted reproductive technologies, where 
pregnancies are routinely initiated in the absence of natural intercourse. A better understand­
ing of the physiological significance of semen in human implantation requires further detailed 
exploration of the cellular and molecular events within the female reproductive tract at insemi­
nation, and may eventually yield novel therapies for infertility and pathologies of pregnancy. 
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