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Humans are exposed to a multitude of exogenous
chemicals, termed “endocrine disrupting chemicals”

(EDCs), that can interfere with endogenous hormone ac-
tion (1). EDCs originate from natural sources such as
plants, fungi, and bacteria, and from a large number of
manmade chemicals, most of which were not designed to
disrupt hormone signaling. Because hormones often act at
very low concentrations, for example estradiol functions
at or below the picomolar range, EDCs can often disrupt
the endocrine system at minute, environmentally relevant
exposures (2). EDCs have been described to disrupt almost
all types of endocrine signaling in laboratory animals and
wildlife (3). Importantly, for many human health end-
points, there is strong evidence to support the hypothesis
that EDCs, within the range of current human exposure,
are having adverse health impacts on the general popula-
tion (1). In the current issue, Veiga-Lopez et al (4) exam-
ine, for the first time, the effects of the EDC bisphenol A
(BPA) on microRNA (miRNA) expression in the fetal ewe
ovary.

BPA has been shown in a number of studies to act
through several different receptor-mediated mechanisms
of action to disrupt the endocrine system (5, 6), and, in
many ways, it has become a model EDC. BPA is a xenoes-
trogen that binds to and activates the estrogen receptor
(ER) (7). Although it has lower affinity for genomic ER
than estradiol, circulating concentrations of BPA are
higher than estradiol and are within a biologically active
range. In addition, BPA is at least as bioactive as estradiol
for a number of responses, particularly those mediated by
nongenomic signaling (8). BPA is also an antiandrogen, in
that it binds to the androgen receptor and blocks the nor-
mal action of androgens (9); it can also alter steroid syn-
thesis and circulating steroid hormone concentrations (9)

and disrupt peroxisome proliferator-activated receptor
(11), thyroid (12, 13), and glucocorticoid signaling. In
the current study, two steroid synthesizing enzymes
were altered: aromatase, the primary estrogen synthe-
sizing enzyme, and 5�-reductase, the androgen-synthe-
sizing enzyme that converts testosterone to the higher
potency dihydrotestosterone.

A major strength of the current study is that the circu-
lating BPA concentration in treated animals was within
the range of current human exposure that has been asso-
ciated with disease (14). BPA is a high-production chem-
ical used in numerous products including polycarbonate
plastic, resin lining of metal food cans, some dental seal-
ants, and thermal receipt paper. Because BPA has wide-
spread use in many products and is readily absorbed both
with internal and external exposure, it is detected in most
humans, water, house dust, and many food products (14,
15). Due to its many routes and sources of exposure, hu-
mans circulate approximately 1 to 2 ng/mL of unconju-
gated BPA in serum (14). Circulating concentrations have
been associated with many human diseases, such as infer-
tility (oocyte number retrieved at in vitro fertilization (16),
recurrent pregnancy loss (17), etc, insulin resistance, di-
abetes, obesity, cardiovascular disease, and hypertension
in adults; and obesity and behavior in children (18). Im-
portantly, for most of these associations causation has
been demonstrated by laboratory studies in animals.

EDCs can alter the trajectory of cell differentiation and
result in developmental origins of adult health and disease.
The current study examines a novel mechanism by which
EDCs may alter fetal development and lead to disease later
in life. Hormones like estradiol and testosterone play key
roles in normal development, and small changes in timing
or concentration can program the fetus or neonate, result-
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ing in lifelong consequences. EDCs like BPA have been
shown to alter human development, and parental occu-
pational exposure to BPA has been associated with a re-
duction in anogenital distance in boys, an androgen-sen-
sitive endpoint (19). Compounds like BPA do not directly
cause DNA mutation but induce epigenetic developmental
events resulting in adult onset disease (20).

The developing ovary requires precisely orchestrated
cues by steroid hormones to establish a competent female
germ line, making this process vulnerable to disruption by
EDCs (reviewed in Ref. 21). Perinatal BPA has been shown
to impact metaphase-II oocytes by increasing aneuploidy
rates in mice and monkeys; accelerate follicle development
resulting in rapid depletion of the follicular reserve in
sheep (22, 23); and accelerate reproductive senescence in
rats (24). In addition, folliculogenesis is disrupted in mice
and primates after BPA exposure, leading to multioocyte
follicles, increased unenclosed oocytes, and nongrowing
oocytes in later follicles (22). Recently, Lee et al (25) dem-
onstrated perturbation in estradiol production and steroid
hormone pathways in mice after BPA exposure. Although
speculation exists as to the precise underlying mechanism
of these effects, alterations in gene expression have been
demonstrated suggesting a role for epigenetic regulators,
such as altered DNA methylation and miRNA expression,
eg, primordial follicle development has been shown to be
dependent on miRNA-143 (26).

In the current issue, Veiga-Lopez et al investigate mech-
anisms of ovarian disruption by fetal exposure to BPA and
altered expression of miRNAs in the ewe. BPA was ad-
ministered from gestation day 30 to 90 via sc injection in
corn oil. On gestation day 65 and 90, fetal ovaries were
harvested, RNA was isolated and used to interrogate 742
miRNAs using a PCR array, and BPA was found to alter
the normal developmental pattern of miRNA expression.
On gestation day 65 relative to control-treated ovaries, 45
miRNAs were down-regulated by BPA. One important
pathway altered by BPA was expression of miRNAs that
regulate SOX family genes, a gene family critical in sex
determination and embryonic development.

In addition to miRNAs, expression of a subset of genes
was analyzed in the current study, and BPA altered ex-
pression of two key steroidogenic enzymes on gestation
day 65. Expression of aromatase, the primary estrogen-
synthesizing enzyme, and 5�-reductase, the androgen-
synthesizing enzyme that converts testosterone to the
higher potency dihydrotestosterone, was up-regulated.
Aromatase expression is key to follicle development.
miRNA-224, miRNA-378, and miRNA-383 regulate aro-
matase expression during follicle development in the adult
ovary (27–29). In the current study, miRNA-383 was up-
regulated in BPA-treated animals between gestation day

45 and 90. A number of miRNAs have now been inves-
tigated in follicle development, and a key pattern has
emerged in the pathways that they are proposed to target:
cell cycle, apoptosis and importantly aromatase activity
(reviewed in Ref. 30). miRNAs generally function as neg-
ative regulators of protein synthesis by coupling with com-
plementary mRNA sequences and either inhibiting their
translation or targeting them for degradation. Due to the
relatively new understanding of the role of miRNAs in
gene regulation, the direct targets of many specific miR-
NAs or their role in early development are largely un-
known. Additional studies are needed to examine whether
BPA modulates miRNA expression to directly regulate
aromatase expression in the fetal ovary.

There is widespread human exposure to BPA at con-
centrations that cause adverse effects in animals and peo-
ple. Estrogens play key roles in orchestrating fetal devel-
opment, and estrogenic activity during fetal life has been
associated with developmental origins of adult disease in
humans, eg, fetal estrogen is positively associated with
breast cancer and endometriosis in adulthood (31–34).
Because BPA can both bind directly to ERs and increase
endogenous estrogen, via up-regulation of aromatase, it
likely functions to increase the overall estrogenic activity
during fetal development.

Taken together, perinatal BPA exposure has a signifi-
cant impact on the developing ovary and results in de-
creased fertility in adulthood by increasing reproductive
senescence and accelerating the rate of atresia in adult-
hood. Although the current study neither assessed the
adult consequences of fetal exposure to BPA nor examined
whether aromatase expression is targeted by any of the
miRNAs altered by BPA exposure, it suggests that in-
creased fetal aromatase expression may be an underlying
mechanism via decreased expression of miRNAs.

The current study adds to a very limited number of
studies on EDC modulation of miRNA expression (35–
37) and suggests that altered miRNA expression may be a
potential mechanism of EDC action during development.
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